| Name: | Maths Class: |
|-------|--------------|
| \alle | Mating Class |

# SYDNEY TECHNICAL HIGH SCHOOL



### **YEAR 12 HSC COURSE**

# **Extension 2 Mathematics**

## Assessment 1 March 2010

**TIME ALLOWED: 70 minutes** 

#### Instructions:

- Write your name and class at the top of this page, and on all your answer sheets.
- Hand in your answers attached to the rear of this question sheet.
- All necessary working must be shown. <u>Marks may not be awarded for careless or badly arranged work.</u>
- Marks indicated within each question are a guide only and may be varied at the time of marking
- START ALL QUESTIONS ON A NEW PAGE
- Approved calculators may be used.

#### (FOR MARKERS USE ONLY)

| 1   | 2   | 3   | TOTAL |
|-----|-----|-----|-------|
|     |     |     |       |
| /17 | /17 | /16 | /50   |

# **QUESTION 1: (17 Marks)**

#### Marks

5 (a) If  $z = 1 - \sqrt{3}i$ , find

(i)  $\bar{z}$  (ii) |z| (iii) arg z (iv) arg iz (v)  $\frac{1}{z}$  (in simplest form)

(b) Given the ellipse  $9x^2 + 16y^2 = 144$ , find

1 (i) the length of the major axis

1 (ii) the eccentricity

1 (iii) the co-ordinates of the foci

1 (iv) the equations of the directrices

(v) the slope of the tangent at the point P  $(3, \frac{3\sqrt{7}}{4})$ 

1 (vi) the equation of the normal at P  $(3, \frac{3\sqrt{7}}{4})$  (DO NOT SIMPLIFY THIS)

2 (c) (i) Sketch the region where the inequalities

$$|z-2| \le |z-2i|$$
 and  $|z-1-2i| \le 1$ 

hold simultaneously.

4 (ii) P is a point on the boundary of the region in part (i) above, and is represented by the complex number z, where  $arg z = \frac{\pi}{4}$ .

Find the 2 possibilities for z (in the form a+ib).

## **QUESTION 2:** (17 Marks)

#### Marks

(a) The point Z, represents the complex number z = 2 + 3i



The line OZ is rotated anticlockwise by  $\frac{\pi}{2}$  radians to form the line OW.

- 2 (i) Find the complex number w, represented by the point W.
- 2 (ii) Give the exact value of  $\arg(\frac{z}{w})$
- 3 (b) For any point Z, representing the complex number z, you are given that arg(z-1) arg(z-i) = 0

On an Argand Diagram, draw the locus of the point Z.

- 5 (c) (i) Prove De Moivre's Theorem by the process of Mathematical Induction. [NOTE: De Moivre's Theorem states that  $(rcis \theta)^n = r^n cis n\theta$ ]
- 2. (ii) Express both 1+i and 1-i in the form  $rcis \theta$
- 3 (iii) Using De Moivre's Theorem, or otherwise, and your answers to part (b) above, find, as a whole number, the value of

$$(1+i)^9 + (1-i)^9$$

## **QUESTION 3: (16 Marks)**

Marks

(a)  $P(x_1, y_1) \text{ is any point on the ellipse } \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 



The tangent at P cuts the major axis of the ellipse at T and the Directrix at R, while N is the foot of the perpendicular from P to the x-axis.

O is the centre of the ellipse, while S and S' are the foci.

- 4 (i) Show that the equation of the tangent at P is  $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$ (Show all working)
- 1 (ii) Find the co-ordinates of the point T.
- 1 (iii) Show that ON.OT =  $a^2$

QUESTION 3 continues overleaf....

# .....QUESTION 3 continued

- (b) You are given the curve  $y^2 = x^2(4 x^2)$ ,
- 1 (i) Find the points where this curve cuts the x-axis.
- 3 (ii) Use implicit differentiation, or otherwise, to show that  $\frac{dy}{dx} = \frac{4x 2x^3}{y}$ 
  - (iii) By taking the positive square root of the curve only, the curve becomes

$$y = x\sqrt{(4 - x^2)}$$

- Show that, in this instance,  $\frac{dy}{dx} = \frac{2(2-x^2)}{\sqrt{4-x^2}}$
- 3 (iv) Hence find the co-ordinates of the turning points on the new curve  $y = x\sqrt{(4-x^2)}$  and identify their nature.

#### DO NOT ATTEMPT TO FIND THE SECOND DERIVATIVE

2 (v) Hence neatly sketch the original curve  $y^2 = x^2(4 - x^2)$ , showing all features found in the parts above.

| acher's Name:                          | Student's Name/N°:                                                        |                     |
|----------------------------------------|---------------------------------------------------------------------------|---------------------|
| OVESTION 1:                            |                                                                           |                     |
|                                        | 4                                                                         |                     |
| (a) z=1-13i                            |                                                                           |                     |
| (i) z = 1+(3)                          | (ii) 12) = VI+3                                                           |                     |
|                                        | F 2                                                                       | 1 MARK EACH         |
| (iii) $\alpha r_0 z = t \alpha r_0$    | -1 (-13) (N) -73+72                                                       |                     |
| = -11/3                                | = 376                                                                     |                     |
| 1.45                                   |                                                                           |                     |
| (v) = 1+1=                             | _                                                                         | J                   |
| (b) $\frac{2}{16} + \frac{5^2}{36}$    | =1                                                                        |                     |
| _                                      |                                                                           | 70 MARK each 10     |
| (i) m AJOR AXIS                        |                                                                           |                     |
| (ii) $6^2 = a^2(1-a^2)$                |                                                                           |                     |
| 9 = 16(1.                              |                                                                           |                     |
| $e^2 = 1 - 6$                          | 16 => e= 1/4                                                              | //                  |
| (iii) Foci ae                          | (± √7,0)                                                                  | 7,                  |
| (iv) Directives o                      | e x = 1657 (02 1/7)                                                       | ):                  |
| (v) $2v + 2v$                          |                                                                           | 4                   |
|                                        | $\frac{2\pi}{\sqrt{5}} = \frac{2\pi}{\sqrt{5}} \times \frac{9}{\sqrt{2}}$ |                     |
| · , /a                                 | ***************************************                                   | u u                 |
| Δ ,                                    | = -9 1/2 / 1/2 / 9.13                                                     | 4                   |
| A) x=3                                 | $y = 3\sqrt{7}$ $m_T = -\frac{9\sqrt{7}}{28}$                             |                     |
| $(v_1)$ $m_N = 2$                      | 8/6                                                                       | <u> </u>            |
|                                        |                                                                           |                     |
|                                        | $= \frac{28}{917} \left( x - 3 \right)$                                   | any of the forms    |
| 9                                      | 7 = 18x - 84                                                              | and                 |
| 114x - 51                              | y F7 - 147 = 0                                                            | +                   |
| - \ \ \ \ \                            |                                                                           |                     |
| C) 2 . P                               |                                                                           | () mark for circle  |
|                                        |                                                                           | Domars for the line |
| 7 2                                    | <del></del>                                                               |                     |
| ······································ |                                                                           |                     |

# SONMONS

| Yeacher's Name: Student's Name                                                                   | e/N°:                            |
|--------------------------------------------------------------------------------------------------|----------------------------------|
|                                                                                                  | 1 MARKE and                      |
| Overnon 2:                                                                                       | COMMENT                          |
| (a) (i) W= iz                                                                                    | 1 for -(his )                    |
| = (2i-3<br>(-3+2i                                                                                | 2                                |
| (-3+2;                                                                                           | I for eite                       |
| (ii) arg (3/2)=0033-009W                                                                         |                                  |
| $\omega$ $\sqrt{3} = -\sqrt{2}$                                                                  | Zmarks                           |
|                                                                                                  |                                  |
|                                                                                                  |                                  |
| OR, by rationalising the freats                                                                  | , and finding                    |
| the arrwer was purely nego                                                                       |                                  |
| (b) R 18                                                                                         | I MORK - by the                  |
|                                                                                                  | 1" fargepin                      |
| Ψ.                                                                                               | 1 " for open in                  |
|                                                                                                  | 7                                |
|                                                                                                  |                                  |
| ×                                                                                                |                                  |
| (c) For n=1, rais0 = rais0                                                                       | 7 RUBAL 7                        |
| (i) For n=2 (ruso) = +2 (cooo                                                                    | 1 -                              |
| •                                                                                                | ot issue) testing 1,7            |
| : true tou n = 1, 2                                                                              | ´                                |
| Assume the formula is the for n= &                                                               |                                  |
| (raio) = r cisto                                                                                 |                                  |
| FOI n= k+1 k+1                                                                                   |                                  |
| $\frac{\text{for } n=k+1}{(\text{rais} \Theta)} = (\text{rais} \Theta)^{k} (\text{rais} \Theta)$ | +) ← ①                           |
| = r ao ko rais                                                                                   | 30 LO                            |
| = rk/coskodo 0 -                                                                                 | - sinusinko ti (coosinto + custo |
| <u> </u>                                                                                         | 1 ,                              |
| = (k+1)0                                                                                         | (1) / [d(t)) (2) + e             |
| If the formula is the for No                                                                     | 2) it is the for order) ) () for |
| But it is the form= 2, so it is                                                                  | do to the n=3 (occeptable        |
| etc.                                                                                             | Cocchic                          |

| Teacher's Name: Student's Name/N°:                                      |                     |
|-------------------------------------------------------------------------|---------------------|
| QUESTION 3:                                                             |                     |
| $(a)(i)$ $\frac{2\pi}{a^2} + \frac{29}{b^2} \frac{dy}{dz} = 0$          |                     |
|                                                                         |                     |
| $\frac{dy}{dx} = -\frac{2y}{a^2} \times \frac{b^7}{2y}$                 |                     |
|                                                                         | (1) for this        |
| = 2b = 12                                                               |                     |
| $A+(x_1, y_1) m_{\bar{1}} = -\frac{x_1b^2}{y_1a^2}$                     |                     |
|                                                                         |                     |
| $y-y, = -\lambda, a^2(x-x, y)$                                          | ]                   |
| $y - y_1 = - \frac{1}{2} (x - x_1)$ $y - y_1 = - \frac{1}{2} (x - x_1)$ | 170                 |
| $yy_1a^2 + kn_1b^2 = x_1^2b^2 + y_1^2a^2$                               | IJ                  |
| Divide by ab                                                            |                     |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                   |                     |
| a <sup>2</sup> b <sup>2</sup> a <sup>2</sup> b <sup>2</sup>             |                     |
| (0)                                                                     | 16                  |
| (ii) T is (a/2,,0)                                                      | I MARK              |
| $(\underline{iii})$ ON. $OR = x_1, x_2$                                 | 1 mark              |
| $= \alpha^2$                                                            |                     |
| (b) (i) $n = 2$ or $n = -2$                                             | 1 mark              |
| ,                                                                       |                     |
| (ii) $= (4-x^2)^2 + x^2(-2x)$                                           | 2 1200863           |
| = 8x + x2                                                               |                     |
| $\frac{dy}{dx} = \frac{8x - 4x^3}{2y}$                                  | 2                   |
|                                                                         | ( ) for simplifying |
| $= 4n-2n^3$                                                             | J                   |
|                                                                         |                     |
| (ii) Mang y = 2 14-22                                                   |                     |
| $\frac{dy}{dx} = \frac{4x - 2x^3}{x\sqrt{4 - x^2}}$                     | 1 mark              |
| $= \frac{4-2x^2}{\sqrt{4-x^2}}$                                         |                     |
| - V4-x 1                                                                |                     |